Nombres Complexes (Trigonométrie Et Géométrie)

Wednesday, 31 July 2024

Comment définir un lieu géométrique?

  1. Lieu géométrique complexe le
  2. Lieu géométrique complexe 2
  3. Lieu géométrique complexe de recherche interprofessionnel
  4. Lieu géométrique complexe 3
  5. Lieu géométrique complexe en

Lieu Géométrique Complexe Le

Bonjour, je rencontre des difficultés avec un devoir maison, et j'espère que vous pourrez éclairer ma lanterne. Dans l'énoncé, * est la marque du conjugué, je n'ai pas trouvé d'autre moyen de l'exprimer à l'aide d'un caractère spécial. Cette exercice est divisé en trois partie, dans le doute j'ai préféré ne pas poster trois topics différents, ces parties étant liées. Cet exercice est très long, je n'attends pas un corrigé simplement de l'aide sur la voie à suivre. Énoncé introductif: "On considère la fonction f de C-(0) dans C-(0) avec f(z)= 1/z*. Lieu géométrique complexe le. On nomme M et M' les images respectives de z et de z' = f(z) dans le plan complexe, et F la transformation du plan P privé du point O qui au point M associe le point M'. Le but de cette étude est de déterminer l'ensemble décrit par M' lorsque le point M décrit une courbe donnée: cela s'appelle un "lieu géométrique". " L'étude se déroule en trois partie, chaque partie s'articulant entre une partie expérimentale et une partie théorique. Les parties expérimentales s'appuient sur le logiciel libre Geogebra, et servent à établir les conjectures qui permettront ensuite de discuter des résultats obtenus lors de la partie théorique, du moins il me semble.

Lieu Géométrique Complexe 2

Représentation géométrique des nombres complexes Enoncé On considère le nombre complexe $z=3-2i$. Placer dans le plan complexe les points $A, B, C, D$ d'affixes respectives $z$, $\bar z$, $-z$ et $-\bar z$. Placer dans le plan complexe les points $E, F, G, H$ d'affixes respectives $$z_E=2e^{i\pi/3}, \ z_F=-e^{i\pi/6}, \ z_G=-z_E\times z_F, \ z_H=\frac{-z_F}{z_E}. $$ Enoncé Le point $M$ de la figure ci-dessous à pour affixe $z$. Reproduire la figure et tracer: en vert l'ensemble des points dont l'affixe non nulle $z'$ est telle que $$\arg(z')=\arg(z)+\frac\pi 2\ [2\pi]. $$ en bleu l'ensemble des points dont l'affixe non nulle $z'$ est telle que $$|z'|=2|z|. $$ en noir l'ensemble des points dont l'affixe non nulle $z'$ est telle que $$\arg(z')=\arg(z)\ [\pi]. Lieu géométrique complexe 2. $$ en rouge l'ensemble des points dont l'affixe non nulle $z'$ est telle que $$\arg(z')=\arg(z)+\arg(\bar z)\ [2\pi]. $$ Enoncé Dans le plan rapporté à un repère orthonormé $(O, \vec u, \vec v)$, on considère les points $A$, $B$, $C$ et $D$ d'affixes respectives $a=-1+i$, $b=-1-i$, $c=2i$ et $d=2-2i$.

Lieu Géométrique Complexe De Recherche Interprofessionnel

En déduire la longueur $\ell$ de la ligne polygonale $A_0A_1A_2\dots A_{12}. $ Enoncé Soit $ABCD$ un carré dans le plan complexe. Prouver que, si $A$ et $B$ sont à coordonnées entières, il en est de même de $C$ et $D$. Peut-on trouver un triangle équilatéral dont les trois sommets sont à coordonnées entières? Enoncé On se place dans le plan rapporté à un repère orthonormé $(O, \vec i, \vec j)$. Nombres complexes (trigonométrie et géométrie). Soit $A$ et $B$ deux points du plan, d'affixes respectives $a$ et $b$. Donner les affixes $p$ et $p'$ des centres $P$ et $P'$ des deux carrés de côté $[AB]$. Soit $ABC$ un triangle du plan. On considère les trois carrés extérieurs aux côtés du triangle, et on note $P$, $Q$ et $R$ les centres respectifs des carrés de côté $[AB]$, $[BC]$ et $[CA]$. Donner les affixes $p$, $q$ et $r$ des points $P$, $Q$ et $R$ en fonction des affixes $a$, $b$ et $c$ des points $A$, $B$ et $C$. Montrer que les triangles $ABC$ et $PQR$ ont même centre de gravité. Démontrer que $PR=AQ$ et que les droites $(AQ)$ et $(PR)$ sont perpendiculaires.

Lieu Géométrique Complexe 3

Sommaire Introduction Ce cours fait partie d'un ensemble de cours sur les nombres complexes: une introduction: Nombres complexes (introduction), deux cours qui recouvrent le programme de l'option "Mathématiques expertes" de classe terminale: celui-ci et un autre sur les équations en cours d'élaboration, le cours Géométrie du plan complexe qui décrit les isométries et les similitudes du plan complexe avec exercices et figures. Prérequis Pour vous assurer de vos connaissances de base sur les nombres complexes, consultez le cours WIMS Nombres complexes (introduction) et testez-vous sur les exercices. Plus précisément, avant d'aborder la partie calcul algébrique, vérifiez que vous avez acquis les notions et les méthodes de la partie 2. Avant d'aborder la partie trigonométrie, vérifiez que vous avez acquis les notions et les méthodes de la partie 3. Lieu géométrique complexe en. Pour la partie géométrique, travaillez les parties 1 et 4. Ensuite vous pourrez poursuivre votre étude. Calcul algébrique Formule du binôme de Newton Équations linéaires Pour compléter l'étude des équations à coefficients complexes, étudiez le cours Nombres complexes (équations).

Lieu Géométrique Complexe En

Dans le plan complexe, déterminer l'ensemble ( E) \left(E\right) des points M M d'affixe z z tels que z + 1 − i z − i \frac{ z+1 - i}{ z - i} soit un nombre imaginaire pur. Corrigé Indications L'idée est d'appliquer la formule sur les angles et arguments ( A B →; A C →) = a r g ( z C − z A z B − z A) \left(\overrightarrow{AB};\overrightarrow{AC}\right)= \text{arg}\left(\frac{z_{C} - z_{A}}{z_{B} - z_{A}}\right) mais il faut aussi bien traiter les cas «limites» qui pour lesquels le numérateur ou le dénominateur s'annule. Nombres complexes - Un résultat de géométrie.... Tout d'abord, notons que le rapport z + 1 − i z − i \frac{ z+1 - i}{ z - i} n'est pas défini pour z = i z=i donc le point A A d'affixe i i n'appartient pas à l'ensemble ( E) \left(E\right). Ensuite pour z = − 1 + i z= - 1+i, z + 1 − i z − i = 0 \frac{ z+1 - i}{ z - i}=0 qui est bien un imaginaire pur ( 0 = 0 i 0=0i) donc le point B B d'affixe − 1 + i - 1+i appartient à l'ensemble ( E) \left(E\right). Enfin, si z ≠ i z\neq i et z ≠ − 1 + i z\neq - 1+i, le rapport z + 1 − i z − i \frac{ z+1 - i}{ z - i} peut s'écrire z − z B z − z A \frac{z - z_{B}}{z - z_{A}} où A A et B B sont les points d'affixes respectives i i et − 1 + i - 1+i.

Enoncé Soit la figure suivante: Le but de l'exercice est de démontrer que $\alpha+\beta+\gamma=\frac{\pi}{4}\ [2\pi]$. On se place dans le repère orthonormé direct $(A, \vec u, \vec v)$ de sorte que $\vec u=\overrightarrow{AB}$. Reproduire la figure et placer les points $E$ et $F$ sur $[DZ]$ tels que $\beta$ et $\gamma$ soient des mesures respectives de $(\vec u, \overrightarrow{AE})$ et $(\vec u, \overrightarrow{AF})$. Quelles sont les affixes des points $z_Z$, $z_E$ et $z_F$? Démontrer que $z_Z\times z_E\times z_F=65(1+i)$. Conclure. Enoncé Dans le plan muni d'un repère orthonormal $(O, \vec i, \vec j)$, on note $A_0$ le point d'affixe 6 et $S$ la similitude de centre $O$, de rapport $\frac{\sqrt 3}2$ et d'angle $\frac\pi 6$. On pose $A_{n+1}=S(A_n)$ pour $n\geq 1$. Déterminer, en fonction de $n$, l'affixe du point $A_n$. En déduire que $A_{12}$ est sur la demi-droite $(O, \vec i)$. Nombres complexes - Lieux géométriques - 1 - Maths-cours.fr. Établir que le triangle $OA_nA_{n+1}$ est rectangle en $A_{n+1}$. Calculer la longueur du segment $[A_0A_1]$.