Inégalité De Convexity

Thursday, 1 August 2024

Probabilités, statistiques [ modifier | modifier le code] L'énoncé ci-dessus se transcrit dans le langage de la théorie des probabilités et de la statistique: Soit f une fonction convexe sur un intervalle réel I et X une variable aléatoire à valeurs dans I, dont l' espérance existe. Alors, On peut alors en déduire un résultat important de statistique: le théorème de Rao-Blackwell. Inégalité de convexité démonstration. En effet, si L est une fonction convexe, alors d'après l'inégalité de Jensen, Si δ( X) est un estimateur d'un paramètre non observé θ étant donné un vecteur X des observables, et si T ( X) est une statistique suffisante pour θ, alors un estimateur plus performant, dans le sens de la minimisation des pertes, est donné par: C'est-à-dire l'espérance de δ par rapport à θ, prise sur tous les vecteurs X compatibles avec la même valeur de T ( X). Démonstration [ modifier | modifier le code] La démonstration historique [ 6] de la forme discrète est une preuve (par un principe de récurrence alternatif) du cas où les coefficients sont égaux, complétée par un argument de densité de ℚ dans ℝ.

  1. Inégalité de convexité sinus
  2. Inégalité de convexité généralisée
  3. Inégalité de convexity

Inégalité De Convexité Sinus

Ensembles convexes Enoncé Soit $C_1$, $C_2$ deux parties convexes d'un espace vectoriel réel $E$ et soit $s\in [0, 1]$. On pose $C=sC_1+(1-s)C_2=\{sx+(1-s)y;\ x\in C_1, \ y\in C_2\}$. Démontrer que $C$ est convexe. Enoncé Soit $C_1$ et $C_2$ deux ensembles convexes de $\mathbb R^n$ et $C_1+C_2=\{x+y;\ x\in C_1, \ y\in C_2\}$. Démontrer que $C_1+C_2$ est convexe. Inégalité de Jensen — Wikipédia. Enoncé Pour tout $E\subset\mathbb R^n$, on appelle enveloppe convexe de $E$ l'ensemble $$K(E)=\bigcap_{A\in \mathcal E(E)}A$$ où $\mathcal E(E)$ désigne l'ensemble des convexes de $\mathbb R^n$ contenant $E$. Démontrer que $K(E)$ est convexe. Déterminer $K(E)$ lorsque $E$ est la courbe de la fonction $y=\tan x$ pour $x\in \left]-\frac{\pi}2, \frac{\pi}2\right[$. Inégalités de convexité Enoncé Soient $a, b\in\mathbb R$. Montrer que $\displaystyle e^{\frac{a+b}2}\leq\frac{e^a+e^b}{2}. $ Montrer que $f(x)=\ln(\ln (x))$ est concave sur $]1, +\infty[$. En déduire que $\forall a, b>1, \ \ln\left(\frac{a+b}{2}\right)\geq \sqrt{\ln a.

Inégalité De Convexité Généralisée

Compléments sur les fonctions Définition d'une fonction convexe par une inégalité 50 min 5 points Intérêt du sujet • Il y a plusieurs façons d'aborder la notion de convexité. Ce sujet vous en propose une nouvelle qui lie des notions de géométrie et d'analyse, et qui est fondée sur l'étude d'une inégalité. Soit f une fonction convexe sur un intervalle I et soient a et b deux éléments de I. On considère les points A et B de la courbe représentative de f de coordonnées respectives A ( a; f ( a)) et B ( b; f ( b)). Soient A 0 ( a; 0) et B 0 ( b; 0) deux points de l'axe des abscisses. Inégalité de convexité sinus. On se propose de montrer que f est convexe sur a; b si, pour tout t appartenant à 0; 1, on a f ( t a + ( 1 − t) b) ≤ t f ( a) + ( 1 − t) f ( b). Partie A: Caractérisation de la convexité ▶ 1. Soit M un point d'abscisse x 0 situé entre A 0 et B 0 tel que B 0 M → = t B 0 A 0 → avec t ∈ 0; 1. a) Déterminer l'abscisse de M en fonction de a, b et t. b) Déterminer l'équation réduite de la droite ( AB). c) En traduisant que f est une fonction convexe sur a; b à l'aide de la position de la courbe par rapport à ses cordes, montrer que f est convexe si, pour tout t ∈ 0; 1, f ( t a + ( 1 − t) b) ≤ t f ( a) + ( 1 − t) f ( b).

Inégalité De Convexity

Alors, il existe tels que et. Considérons la fonction croissante de la propriété 3 ci-dessus et un réel tel que. Pour tout, on a, avec égalité si. La propriété est donc satisfaite en prenant. Propriété 11 Soit une fonction continue. Pour que soit convexe sur, il suffit qu'elle soit « faiblement convexe », c'est-à-dire que. (L'expression « faiblement convexe » est empruntée à Emil Artin, The Gamma Function, Holt, Rinehart and Winston, 1964, 39 p. Leçon 253 (2020) : Utilisation de la notion de convexité en analyse.. [ lire en ligne], p. 5. ) Cette démonstration, extraite de, utilise le théorème de Weierstrass (ou « des bornes »). Pour une autre démonstration, voir le § « Possibilité de n'utiliser que des milieux » de l'article de Wikipédia sur les fonctions convexes. Raisonnons par contraposée, c'est-à-dire supposons que (continue sur) n'est pas convexe et montrons qu'alors elle n'est même pas « faiblement convexe ». Par hypothèse, il existe un intervalle tel que le graphe de la restriction de à ce sous-intervalle ne soit pas entièrement en-dessous de la corde qui joint à, c'est-à-dire tel que la fonction (continue) vérifie:.

φ: x ↦ x ⁢ ln ⁡ ( x) est convexe sur I = ℝ + * car φ ′ ⁢ ( x) = 1 + ln ⁡ ( x) croît avex x. L'inégalité précédente donne alors 0 ≤ ∫ 0 1 f ⁢ ( t) ⁢ ln ⁡ ( f ⁢ ( t)) ⁢ d t puisque ∫ 0 1 f ⁢ ( t) ⁢ d t = 1 annule φ. x ↦ x ⁢ ln ⁡ ( x) étant convexe et de tangente d'équation y = x - 1 en 1, on a x ⁢ ln ⁡ ( x) ≥ x - 1 ⁢ pour tout ⁢ x > 0 ⁢. Par suite, ∫ 0 1 f ⁢ ( t) ⁢ ln ⁡ ( f ⁢ ( t)) ⁢ d t - ∫ 0 1 f ⁢ ( t) ⁢ ln ⁡ ( g ⁢ ( t)) ⁢ d t = ∫ 0 1 f ⁢ ( t) g ⁢ ( t) ⁢ ln ⁡ ( f ⁢ ( t) g ⁢ ( t)) ⁢ g ⁢ ( t) ⁢ d t ≥ ∫ 0 1 ( f ⁢ ( t) g ⁢ ( t) - 1) ⁢ g ⁢ ( t) ⁢ d t = 0 ⁢. Exercice 12 4689 Soit f: [ 0; 1] → ℝ une fonction convexe dérivable. Montrer 1 1 Ce résultat permet d'estimer la qualité de l'approximation de la valeur d'une intégrale d'une fonction convexe par l'aire d'un trapèze. 0 ≤ f ⁢ ( 0) + f ⁢ ( 1) 2 - ∫ 0 1 f ⁢ ( t) ⁢ d t ≤ f ′ ⁢ ( 1) - f ′ ⁢ ( 0) 8 ⁢. Exercice 13 2942 X (MP) Correction Soit f: [ 0; 1] → ℝ continue, concave et vérifiant f ⁢ ( 0) = 1. Inégalité de convexity . Établir ∫ 0 1 x ⁢ f ⁢ ( x) ⁢ d x ≤ 2 3 ⁢ ( ∫ 0 1 f ⁢ ( x) ⁢ d x) 2 ⁢.