Fiche Sur Les Suites Terminale S

Wednesday, 31 July 2024

+ \infty - \infty - \infty + \infty C La limite d'une suite géométrique de terme général q^{n} La limite d'une suite géométrique de terme général q^{n} La limite de la suite géométrique de terme général q^{n} dépend de la valeur de q: Condition sur q Limite de \left(q^n\right) q\leq-1 Pas de limite -1 \lt q \lt 1 \lim\limits_{n \to +\infty} q^{n} = 0 q = 1 \lim\limits_{n \to +\infty} q^{n} = 1 q \gt 1 \lim\limits_{n \to +\infty} q^{n} = + \infty Théorème d'encadrement (ou des gendarmes) Soient u_n, v_n et w_n trois suites telles que pour tout entier naturel n, u_n \leq v_n \leq w_n. Cours sur les suites en Terminale S. Si \lim\limits_{n \to \ + \infty} u_n = L et \lim\limits_{n \to \ + \infty} w_n = L alors \lim\limits_{n \to \ + \infty} v_n = L. Théorème de comparaison (1) Soient u_n et v_n deux suites telles que u_n\leq v_n pour tout entier naturel n. Si \lim\limits_{n \to \ +\infty} u_n = L et \lim\limits_{n \to \ +\infty} v_n = L' alors L \leq L'. Théorème de comparaison (2) Soient u_n et v_n deux suites telles que u_n\leq v_n pour tout entier naturel n.

  1. Fiche sur les suites terminale s video
  2. Fiche sur les suites terminale s france

Fiche Sur Les Suites Terminale S Video

(on peut également montrer que le rapport u n + 1 u n \dfrac{u_{n+1}}{u_n} est constant si on sait que la suite ( u n) (u_n) ne s'annule pas. ) En fonction de u 0: u n = u 0 q n u_0~:~u_n=u_0q^n En fonction de u p: u n = u p q n − p u_p~:~u_n=u_pq^{n - p} Pour tout réel q ≠ 1 q \neq 1: 1 + q + q 2 + ⋯ + q n = 1 − q n + 1 1 − q 1+q+q^2+\cdots+q^n =\dfrac{1 - q^{n+1}}{1 - q} si q > 1: lim n → + ∞ q n = + ∞ q>1~:~\lim\limits_{n \rightarrow +\infty}q^n=+\infty; la suite est divergente; si − 1 < q < 1: lim n → + ∞ q n = 0 - 1; la suite converge vers 0; si q ⩽ − 1: q \leqslant - 1~: la suite est divergente (pas de limite); pour q = 1 q=1, la suite est constante. Voir la fiche Algorithme de calcul des premiers termes d'une suite. Initialisation: On montre que la propriété est vraie au premier rang (e. Fiche sur les suites terminale s web. au rang 0). Hérédité: On montre que si la propriété est vraie à un certain rang, alors elle est vraie au rang suivant. Conclusion: On en déduit que la propriété est vraie pour tout entier naturel n n (ou pour tout entier n ⩾ n 0 n \geqslant n_0 si l'initialisation a été faite au rang n 0 n_0).

Fiche Sur Les Suites Terminale S France

Si \lim\limits_{n \to \ + \infty} u_n = + \infty, alors par théorème de comparaison, \lim\limits_{n \to \ + \infty} v_n = + \infty. Si \lim\limits_{n \to \ + \infty} v_n = - \infty, alors par théorème de comparaison, \lim\limits_{n \to \ + \infty} u_n = - \infty. Suite croissante et majorée Toute suite croissante et majorée par un réel M converge vers une limite L vérifiant L\leq M. Ce théorème ne donne pas la valeur de L. Fiche sur les suites terminale s video. Suite décroissante et minorée Toute suite décroissante et minorée par un réel m converge vers une limite L vérifiant L\geq m. Suite monotone et bornée Toute suite bornée et monotone est convergente. V Démontrer une propriété par récurrence Démontrer une propriété par récurrence Soit un entier naturel m. Montrer, par récurrence, qu'une proposition P_n est vraie pour tout entier naturel n\geq m signifie: Montrer que la propriété est initialisée, c'est-à-dire que P_m est vraie; cette étape s'appelle l' initialisation. Montrer que la propriété est héréditaire, c'est-à-dire que si P_n est vraie pour un entier naturel quelconque n\geq m, alors P_{n+1} est également vraie; cette étape s'appelle l' hérédité.

Conclure que P_n est vraie pour tout entier n\geq m; cette étape s'appelle la conclusion.