Suite Arithmétique Exercice Corrigé A La

Wednesday, 31 July 2024

Définition Une suite arithmétique est définie par 2 éléments, son premier terme u 0 et sa raison r. Elle vérifie la relation suivante: Propriétés Ecriture générale On peut écrire une suite arithmétique en fonction son premier terme et de n: Ou de manière plus générale, en fonction d'un terme quelconque: \forall n, p \in\N, u_n = u_p + (n-p)r Ce critère est par ailleurs suffisant pour qualifier une suite arithmétique. Si on trouve une suite sous l'une des 2 formes au-dessus, alors on a bien affaire à une suite arithmétique. Fiches de cours de mathématiques en cycle 4 en REP+ - IREM de la Réunion. A noter: La suite (u n+1 -u n) est une suite constante égale à la raison r. Additivité et multiplicativité La somme de suites arithmétiques est une suite arithmétique. En effet, deux suites arithmétique u et v sont définies par \begin{array}{l}u_0 = a \text{ et raison} = r_1\\ v_{0}= b\text{ et raison}= r_2\end{array} Alors montrons que la somme est bien une suite arithmétique: \begin{array}{l} u_n = a + nr_1\\ v_n=b + nr_2 \end{array} Alors, u_n + v_n = a + b + n(r_1+r_2) Ce qui signifie que u + v est une suite de premier terme a + b et de raison r 1 + r 2.

  1. Suite arithmétique exercice corrigé 2020

Suite Arithmétique Exercice Corrigé 2020

Si le taux mensuel est de 0, 005, quelle doit être la valeur du montant d'argent déposé chaque mois? Exercice 2: Quel montant doit-on verser le premier janvier de chaque année et pendant 8 ans pour rembourser un emprunt de 90 000 DH avec un taux de 7%? Application directe de la formule: Les annuités quelconques Les annuités quelconques de fin de période Vn = la valeur acquise par la suite des annuités. Les suites adjacentes : Cours et exercices corrigés - Progresser-en-maths. ap = l'annuité à la date p. i = le taux d'intérêt.

Étudier les variations de cette suite. Calculer $\ds \sum_{k=0}^n u_k=u_0+u_1+\ldots+u_n$. Correction Exercice 3 On reprend la méthode de l'exercice 1. On cherche la valeur de $u_0$ pour laquelle la suite $\left(u_n\right)$ est constante. On a donc: $\begin{align*} u_0=u_1 &\ssi u_0=\dfrac{1}{2}u_0+4 \\ &\ssi \dfrac{1}{2}u_0=4 \\ &\ssi u_0=8 Donc si $u_0=8$ alors la suite $\left(u_n\right)$ est constante. On considère maintenant la suite $\left(v_n\right)$ définie par $v_n=u_n-8$ pour tout entier naturel $n$. Montrons que cette suite est géométrique. $v_n=u_n-8 \ssi u_n=v_n+8$. $\begin{align*} v_{n+1}&=u_{n+1}-8 \\ &=\dfrac{1}{2}u_n+4-8 \\ &=\dfrac{1}{2}u_n-4 \\ &=\dfrac{1}{2}\left(v_n+8\right)-4\\ &=\dfrac{1}{2}v_n+4-4\\ &=\dfrac{1}{2}v_n La suite $\left(v_n\right)$ est donc une suite géométrique de premier terme $v_0=u_0-8=-11$ et de raison $0, 5$. Suite arithmétique exercice corrigé mathématiques. Ainsi, pour tout entier naturel $n$, on a $v_n=-11\times 0, 5^n$. On en déduit donc que $u_n=v_n+8=-11\times 0, 5^n+8$. Étudions maintenant les variations de cette suite.