Determiner Une Suite Geometrique Pour

Wednesday, 31 July 2024

D'après la définition du sens de variation d'une suite, celui d'une suite géométrique va dépendre du signe de sa raison q et de son premier terme U o: • Si q > 1 et: U 0 > 0 alors la suite géométrique est croissante U 0 < 0 alors la suite géométrique est décroissante. Determiner une suite geometrique de la. • Si o < q < 1 et: U 0 > 0 alors la suite géométrique est décroissante géométrique est croissante. • Si q < 0 alors la suite géométrique n'est ni croissante ni • Si q = 1 alors la suite géométrique est constante: U n = U 0. Exemples • Si une suite géométrique est de raison 4 alors: elle est croissante si U 0 = 1; U 1 = 4; U 2 = 16; U 3 = 64... elle est décroissante si U 0 = -1; U 1 = -4; U 2 = -16; U 3 = -64... alors: elle est décroissante si U 0 = 3;;;... elle est croissante si U 0 = -3;;;... -3 alors elle n'est ni croissante ni décroissante quelque soit le premier terme: U 0 = 1; U 1 = -3; U 2 = 9; U 3 = -27... Les termes sont alternativement positifs puis négatifs.

  1. Determiner une suite geometrique un
  2. Determiner une suite geometrique sur
  3. Determiner une suite geometrique de la

Determiner Une Suite Geometrique Un

La suite (u_n)_{n\geq 2} est donc strictement décroissante.

Determiner Une Suite Geometrique Sur

La plupart des suites ne sont ni arithmétiques ni géométriques. On utilise parfois une suite auxiliaire arithmétique ou géométrique pour étudier des suites quelconques. C'est le cas pour les suites arithmético-géométriques qui peuvent modéliser l'évolution d'une population. Suites Géométriques - Cours sur les Suites | Piger-lesmaths.fr. I Définition Soient a et b deux réels et ( u n) une suite telle que pour tout entier naturel n: u n + 1 = a u n + b Si a est différent de 0 et de 1, et si b est différent de 0, on dit que la suite ( u n) est arithmético-géométrique. On peut remarquer que si a = 1, la suite est arithmétique et que si b = 0, la suite est géométrique; enfin, si a = 0, la suite est constante à partir du rang 1. II Solution particulière constante Théorème: Soient a et b deux réels, a ≠ 1. Il existe une unique suite constante ( c n) telle que pour tout entier naturel n, c n + 1 = a c n + b; elle vérifie, pour tout entier naturel n, c n = b 1 − a. III Utilisation de la suite auxiliaire constante Soient a et b deux réels et ( u n) une suite arithmético-géométrique, telle que pour tout entier naturel n, u n + 1 = a u n + b. Théorème: La suite définie, pour tout entier naturel n, par v n = u n − b 1 − a est une suite géométrique de raison a.

Determiner Une Suite Geometrique De La

Premier exemple Soit (u n) une suite géométrique. On sait que u 3 = 9 et u 6 = 72 Calculer q et u 0. Deuxième exemple Haut de page Soit (u n) une suite géométrique de raison q < 0. On sait que u 5 = 6 et u 7 = 54 Calculer q et u 2. Retour au sommaire des vidéos Retour au cours sur les suites Remonter en haut de la page Cours, exercices, vidéos, et conseils méthodologiques en Mathématiques

Attention! Pour mémoire, l'équation $x^2=a$ avec $a$ un nombre positif, admet deux solutions distinctes: $x=\sqrt{a}$ ou $x=-\sqrt{a}$ Dans le cadre de notre exemple on obtient donc que la raison de la suite géométrique peut être égale à: $q=3$ ou $q=-3$ Il faut donc choisir entre ces deux valeurs. C'est l'énoncé qui nous permet de faire ce choix: Lorsque les termes de la suite sont tous de même signe, la raison est positive Dans le cas contraire, la raison est négative. Suite géométrique. Ici, on a donc: $q=3$ Cas de deux termes séparés de trois rangs Etudions maintenant un exemple où les deux termes de la suite sont distants de 3 rangs: On donne $U_5=96$ et $U_8=768$, deux termes d'une suite géométrique. Calculer la raison de la suite (Un).