Geometrie Repère Seconde

Wednesday, 31 July 2024
Ainsi $\cos^2 \alpha+\sin^2 \alpha =\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1$ [collapse] II Projeté orthogonal Définition 3: On considère une droite $\Delta$ et un point $M$ du plan. Si le point $M$ n'appartient pas à la droite $\Delta$, le point d'intersection $M'$ de la droite $\Delta$ avec sa perpendiculaire passant par $M$ est appelé le projeté orthogonal de $M$ sur $\Delta$; Si le point $M$ appartient à la droite $\Delta$ alors $M$ est son propre projeté orthogonal sur $\Delta$. Propriété 5: Le projeté orthogonal du point $M$ sur une droite $\Delta$ est le point de la droite $\Delta$ le plus proche du point $M$. Chapitre 08 - Géométrie repérée - Site de maths du lycee La Merci (Montpellier) en Seconde !. Preuve propriété 5 On appelle $M'$ le projeté orthogonal du point $M$ sur la droite $\Delta$. Nous allons raisonner par disjonction de cas: Si le point $M$ appartient à la droite $\Delta$ alors la distance entre les points $M$ et $M'$ est $MM'=0$. Pour tout point $P$ de la droite $\Delta$ différent de $M$ on a alors $MP>0$. Ainsi $MP>MM'$. Si le point $M$ n'appartient pas à la droite $\Delta$.
  1. Geometrie repère seconde en
  2. Geometrie repère seconde générale
  3. Geometrie repère seconde guerre

Geometrie Repère Seconde En

Exemple: On considère un triangle $ABC$ rectangle en $A$ tel que $\sin \widehat{ABC}=0, 6$. On souhaite déterminer la valeur de $\cos \widehat{ABC}$. On a: $\begin{align*} \cos^2 \widehat{ABC}+\sin^2 \widehat{ABC}=1 &\ssi \cos^2 \widehat{ABC}+0, 6^2=1\\ &\ssi \cos^2\widehat{ABC}+0, 36=1\\ &\ssi \cos^2\widehat{ABC}=0, 64\end{align*}$ Cela signifie donc que $\cos \alpha=-\sqrt{0, 64}$ ou $\cos \alpha=\sqrt{0, 64}$. Dans un triangle rectangle, le cosinus d'un angle aigu est un quotient de longueur; il est donc positif. Par conséquent $\cos \widehat{ABC}=\sqrt{0, 64}=0, 8$. Preuve Propriété 4 Dans le triangle $ABC$ rectangle en $A$ on note $\alpha=\widehat{ABC}$ (la démonstration fonctionne de la même façon si on note $\alpha=\widehat{ACB}$). Seconde - Repérage. On a alors $\cos \alpha=\dfrac{AB}{BC}$ et $\sin \alpha=\dfrac{AC}{BC}$. Par conséquent: $\begin{align*} \cos^2 \alpha+\sin^2 \alpha&= \left(\dfrac{AB}{BC}\right)^2+\left(\dfrac{AC}{BC}\right)^2 \\ &=\dfrac{AB^2}{BC^2}+\dfrac{AC^2}{BC^2} \\ &=\dfrac{AB^2+AC^2}{BC^2} \end{align*}$ Le triangle $ABC$ étant rectangle en $A$, le théorème de Pythagore nous fournit alors la relation $AB^2+AC^2=BC^2$.

Maths: exercice de géométrie avec repère de seconde. Coordonnées de points, calculs de milieux et de distances, parallélogramme. Exercice N°105: On se place dans un repère orthonormé. 1) Placer les points suivants: A(-3; -4); B(-1; 6); C(3; 2) et D(1; -8). 2) Déterminer les coordonnées du milieu I de [AC]. 3) Montrer que ABCD est un parallélogramme. E est le point tel que C soit le milieu du segment [EB]. 4) Montrer, à l'aide d'un calcul, que les coordonnées de E sont (7; -2). Geometrie repère seconde en. Placer E. 5) Calculer CD et AE. 6) Quelle est la nature du quadrilatère ACED? Justifier. Bon courage, Sylvain Jeuland Exercice précédent: Géométrie 2D – Repère, points, longueurs et triangle – Seconde Ecris le premier commentaire

Geometrie Repère Seconde Générale

Remarque 1: Cette propriété est valable dans tous les repères, pas seulement dans les repères orthonormés. Remarque 2: Cette propriété sera très utile pour montrer qu'un quadrilatère est un parallélogramme ou pour déterminer les coordonnées du quatrième sommet d'un parallélogramme connaissant celles des trois autres. Fiche méthode 1: Montrer qu'un quadrilatère est un parallélogramme Fiche méthode 2: Déterminer les coordonnées du 4ème sommet d'un parallélogramme 3. Longueur d'un segment Propriété 8: Dans un plan munit d'un repère orthonormé $(O;I, J)$, on considère les points $A\left(x_A, y_A\right)$ et $B\left(x_B, y_B\right)$. Geometrie repère seconde générale. La longueur du segment $[AB]$ est alors définie par $AB = \sqrt{\left(x_B-x_A\right)^2 + \left(y_B-y_A\right)^2}$. Exemple: Dans un repère orthonormé $(O;I, J)$ on considère les points $A(4;-1)$ et $B(2;3)$. On a ainsi: $$\begin{align*} AB^2 &= \left(x_B-x_A\right)^2 + \left(y_B-y_A\right)^2 \\ &= (2 – 4)^2 + \left(3 – (-1)\right)^2 \\ &= (-2)^2 + 4^2 \\ &= 4 + 16 \\ &= 20 \\ AB &= \sqrt{20} \end{align*}$$ Remarque 1: Il est plus "pratique", du fait de l'utilisation de la racine carrée, de calculer tout d'abord $AB^2$ puis ensuite $AB$.

On considère un point $P$ de la droite $\Delta$ différent de $M'$. Dans le triangle $MM'P$ rectangle en $M'$ on applique le théorème de Pythagore. Ainsi $MP^2=MM'^2+M'P^2$. Les points $M'$ et $P$ sont distincts. Donc $M'P>0$. Par conséquent $MP^2>MM'^2$. Les deux longueurs sont positives. Geometrie repère seconde guerre. On en déduit donc que $MP>MM'$. Dans les deux cas, le point $M'$ est le point de la droite $\Delta$ le plus proche du point $M$. Définition 4: On considère une droite $\Delta$, un point $M$ du plan et son projeté orthogonal $M'$ sur la droite $\Delta$. La distance $MM'$ est appelé distance du point $M$ à la droite $\Delta$. Définition 5: Dans un triangle $ABC$ la hauteur issue du point $A$ est la droite passant par le point $A$ et son projeté orthogonal $A'$ sur la droite $(BC)$. III Dans un repère du plan 1. Définitions Définition 6: Pour définir un repère d'un plan, il suffit de fournir trois points non alignés $O$, $I$ et $J$. On note alors ce repère $(O;I, J)$. L'ordre dans lequel les points sont écrits est important.

Geometrie Repère Seconde Guerre

3) Coordonnées dun vecteur et conséquences. Dans tout le paragraphe, on munit le plan dun repère quelconque (O,, ). Ce qui induit que les vecteurs et ne sont pas colinéaires. Ils sont encore moins nuls. Coordonnées dun vecteur. Nous allons définir ce que sont les coordonnées dun vecteur dans le repère (O,, ). Si vous souhaitez en savoir plus sur la dmonstration de ce thorme, utilisez le bouton ci-dessous. Comme pour les points, on dit que x est labscisse du vecteur alors que y en est lordonnée. Les coordonnées dun vecteur dépendent de la base (couple de vecteurs (, ) non colinéaires) dans laquelle on se trouve. " a pour coordonnées (x; y) dans la base (, )" se note de deux manières: Certains vont me dire, les coordonnées cest bien beau! Mais si deux vecteurs sont égaux, ils doivent nécessairement avoir même coordonnées. Cest logique! Géométrie - Repérage dans un plan | Seconde | Mathématiques | Khan Academy. Oui cest logique et cest dailleurs le cas! Cela parait logique, mais nous allons quand même le montrer! La preuve du théorème: Une équivalence, cest deux implications.

Gomtrie analytique II: base, repre et coordonnes 1) Bases et repères. Jusqu'à présent, tous les repères abordés étaient définis par trois points. Le plus souvent ils s'appelaient O, I et J. A présent, nous définirons ceux-ci avec un point et deux vecteurs introduisant par là-même la notion de base. Bases. Repères. Un repère peut alors être défini comme un duo formé d'un point et d'une base. Le point O est appelé origine du repère. Le couple (, ) est la base associée à ce repère. Sans compter qu'il y a des repères particuliers: Ce qui change par rapport à la Troisième: Avant un repère était défini par trois points. Maintenant il l'est par un point et deux vecteurs. On pourrait croire que cela change beaucoup de choses en fait cela ne change rien. En effet si l'on pose alors le repère (O;, ) est aussi le repère (O, I, J). 2) Coordonnées dun point dans un repère. Pour tout le paragraphe, on munit le plan dun repère quelconque (non donc particulier) (O;, ). Notre but: dire ce que sont les coordonnées dun point dans un repère.