Satellite Géostationnaire Exercice Physique

Thursday, 11 July 2024

le satellite est soumis à la seule force de gravitation F, dirigée vers le centre de la Terre. Soient t et n les vecteurs unitaires de la base de Frenet. le théorème du centre d'inertie, dans la base de Frenet s'écrit: (h est l'altitude et R le rayon terrestre). Exercice corrigé pdfles satellites artificiels de la terre. 3-ordre de grandeur de la vitesse: R+h voisin 40 000 km ou 4, 2 10 7 m; G voisin 7 10 -11; M voisin 6 10 24 kg v² voisin 10 7 donc v voisin 3 10 3 m s -1. 4-la période de révolution est la durée pour effectuer un tour, soit une circonférence de rayon R+h Longueur de la circonférence: 2 (R+h) = v T Elever au carré et remplacer la vitesse par l'expression ci- dessus on retrouve la 3 ème loi de kepler (loi des périodes): 4-la période du satellite géostationnaire et la période de rotation de la Terre autour de son axe sont égales et valent environ 24 h. Cette égalité n'est pas suffisante pour affirmer que le satellite est géostationnaire. En effet un satellite géostationnaire est un satellite qui a une position fixe par rapport au référentiel terrestre ( il reste en permanence à la verticale d'un même point du sol) Pour être géostationnaire le satellite doit avoir: * une trajectoire circulaire de centre O, centre de la Terre * pour période de révolution celle de de la Terre *et de plus il doit tourner dans le même sens que la Terre avec le même axe de rotation 5-Le plan de sa trajectoire est perpendiculaire à l'axe de rotation de la Terre et il contient le point O: le plan de la trajectoire est obligatoirement équatorial.

Satellite Géostationnaire Exercice De La

Exercices à imprimer pour la tleS sur le mouvement d'un satellite – Terminale Exercice 01: Satellites géostationnaires On donne la constante de gravitation G = 6, 67 x 10 -11 kg -1. m 3. s -2 et la masse de la Terre kg. La terre est assimilée à une sphère parfaite de centre, de rayon m, en rotation autour de l'axe des pôles et qui effectue un tour sur elle-même en s. le référentiel géocentrique est supposé galiléen. Satellite géostationnaire exercice 2020. Un satellite assimilé à un point matériel s de masse m est dit géocentrique s'il reste constamment à la verticale d'un même point H sur Terre et à la même altitude z. Justifier qu'un satellite géostationnaire a un mouvement circulaire uniforme. On admet que le centre du cercle décrit par s est nécessairement. On suppose que le plan dans lequel s évolue n'est pas le plan équatorial; montrer que s ne peut pas être géostationnaire. Déterminer le rayon, l'altitude z et la vitesse v (mesurée dans le référentiel géocentrique) du satellite géostationnaire. Déterminer sa vitesse aréolaire A.

Satellite Géostationnaire Exercice Le

- Par analogie, on peut crire: 2)- Valeur de la masse de Jupiter: il faut travailler avec un satellite de Jupiter, ici: Io. 3)- Valeur de la masse du Soleil: - Il faut travailler avec un satellite du s oleil, ici: Jupiter. -

Satellite Géostationnaire Exercice 2020

Exercice 02: Vitesse d'un satellite Montrer que le module du vecteur vitesse d'un satellite, en orbite circulaire, est constant. Les satellites Spot (Satellites Pour l'Observation de la Terre) sont des satellites de télédétection. Leur altitude est de 822 km. Données: Masse de la Terre, rayon terrestre G = 6, 67 x 10 -11 kg -1. Satellite géostationnaire exercice anglais. s -2 Exprimer la vitesse v du satellite en fonction de la constante de gravitation G, de la masse de la Terre, du rayon terrestre et de l'altitude h du satellite. Calculer la valeur de la vitesse d'un satellite Spot, en km. s -1. Mouvement d'un satellite – Terminale – Exercices corrigés rtf Mouvement d'un satellite – Terminale – Exercices corrigés pdf Correction Correction – Mouvement d'un satellite – Terminale – Exercices corrigés pdf Autres ressources liées au sujet Tables des matières Mouvement d'un satellite - Satellite et gravitation - Physique - Physique - Chimie: Terminale S – TS

Satellite Géostationnaire Exercice Anglais

La relation m g = m (6) permet d'écrire: V 2 = r g (7) Remarque: Reprenons la relation (2) F = m g = G m M / r ² qui entraîne: g = G M / r ² (2 bis) à l'altitude h = r - R 0. g 0 = G M / R 0 ² (2 ter) au niveau du sol (h 0 = 0). Les relations (2 bis) et (2 ter) permettent d'écrire: g r ² = g 0 R 0 ² (8) g = g 0 R 0 ² / r ² (8 bis) Portons (8 bis) dans la relation V 2 = r g (7): V 2 = r g = r g 0 R 0 ² / r ² V 2 = g 0 R 0 ² / r (9) (les deux inconnues V et r sont en bleu) De plus, on sait que: T = 2 p r / V (10) (les deux inconnues V et r sont en bleu) Les deux relations (9) et (10) forment un système de deux équations à deux inconnues.

L'accélération tangentielle est nulle mais il y a une accélération centripète a N = = g (6 bis) car la direction du vecteur vitesse change ( revoir la leçon 8). La relation m g = m (6) permet d'écrire: V 2 = r g (7) Remarque: Reprenons la relation (2) F = m g = G m M / r ² qui entraîne: g = G M / r ² (2 bis) à l'altitude h = r - R 0. g 0 = G M / R 0 ² (2 ter) au niveau du sol (h 0 = 0). Les relations (2 bis) et (2 ter) permettent d'écrire: g r ² = g 0 R 0 ² (8) g = g 0 R 0 ² / r ² (8 bis) Portons (8 bis) dans la relation V 2 = r g (7): V 2 = r g = r g 0 R 0 ² / r ² V 2 = g 0 R 0 ² / r (9) (les deux inconnues V et r sont en bleu) De plus, on sait que: T = 2 r / V (10) (les deux inconnues V et r sont en bleu) Les deux relations (9) et (10) forment un système de deux équations à deux inconnues.