Formule Série Géométrique

Wednesday, 31 July 2024

Dans ce cas, la formule de série géométrique pour la somme est \[ S = \displaystyle \sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}\] Exemples A titre d'exemple, nous pouvons calculer la somme des séries géométriques \(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8},.... \). Dans ce cas, le premier terme est \(a = 1\) et le rapport constant est \(r = \frac{1}{2}\). Alors, la somme est calculée directement comme: \[ S = \displaystyle \sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r} = \frac{1}{1-1/2} = \frac{1}{1/2} = 2\] Ce qui se passe avec la série est \(|r| > 1\) Réponse courte: la série diverge. Les termes deviennent trop grands, comme pour la croissance géométrique, si \(|r| > 1\) les termes de la séquence deviendront extrêmement grands et convergeront vers l'infini. Et si la somme n'est pas infinie Dans ce cas, vous devez utiliser ceci calculatrice de somme de séquence géométrique, dans lequel vous additionnez un nombre fini de termes. Ce site Web utilise des cookies pour améliorer votre expérience.

Chapitre 9 : SÉRies NumÉRiques - 1 : Convergence Des SÉRies NumÉRiques

Un ensemble de choses qui sont en ordre s'appelle une séquence et lorsque les séquences commencent à suivre un certain modèle, elles sont connues sous le nom de progressions. Les progressions sont de différents types comme la progression arithmétique, les progressions géométriques, les progressions harmoniques. La somme d'une séquence particulière est appelée une série. Une série peut être infinie ou finie selon la séquence, si une séquence est infinie, elle donnera une série infinie tandis que, si une séquence est finie, elle donnera une série finie. Prenons une suite finie: un 1, un 2, un 3, un 4, un 5, ………. un n La série de cette séquence est donnée par: a 1 + a 2 + a 3 + a 4 +a 5 +………. a n La Série est également désignée par: La série est représentée à l'aide de la notation Sigma (∑) afin d'indiquer la sommation. Série géométrique Dans une série géométrique, chaque terme suivant est la multiplication de son terme précédent par une certaine constante et selon la valeur de la constante, la série peut être croissante ou décroissante.

Somme.Series (Somme.Series, Fonction)

Démonstration Partons du nombre: Multiplions-le par l'inverse de la raison de la suite, à savoir 10. Soustrayons maintenant le nombre S initial: Donc, on a: CQFD! Une série de zéros peut se remplacer par une série de 9 en retranchant 1 au chiffre précédent: Car en utilisant le résultat ci-dessus: Le développement des décimaux à chiffres périodiques [ modifier | modifier le wikicode] Après avoir vu le cas du développement de l'unité, on peut passer à des décimaux périodiques de la forme: ou. Par exemple, le nombre est la somme totale de la série géométrique suivante:. On voit que cet exemple est une suite géométrique de raison l/10 et de premier terme 7/10. La formule d'une série géométrique nous dit que cette série vaut: Si on applique le même raisonnement aux nombres dont un seul chiffre est répété infiniment, on trouve: On voit clairement qu'il y a un certain motif qui se dégage, un motif suffisamment évident pour ne pas le détailler plus.

Le nombre de valeurs de l'argument coefficients détermine le nombre de termes de la série de puissances. Ainsi, si l'argument coefficients est composé de trois valeurs, la série comporte trois termes. Note Si l'un des arguments n'est pasnumérique, la #VALUE! #VALEUR!. Exemple Copiez les données d'exemple dans le tableau suivant, et collez-le dans la cellule A1 d'un nouveau classeur Excel. Pour que les formules affichent des résultats, sélectionnez-les, appuyez sur F2, puis sur Entrée. Si nécessaire, vous pouvez modifier la largeur des colonnes pour afficher toutes les données. Données Coefficients sous forme de nombres Coefficients sous forme de formules 0, 785398163 =PI()/4 1 -0, 5 =-1/FACT(2) 0, 041666667 =1/FACT(4) -0, 001388889 =-1/FACT(6) Formule Description (résultat) Résultat (A3; 0; 2; A4:A7) Approximation du cosinus des Pi/4 radians, ou 45 degrés (0, 707103). 0, 707103