Apmep : Terminale S 270 Sujets Depuis ... - Les Exercices Regroupés Par Type

Thursday, 11 July 2024
Ce caractère a une fréquence p dans la population dont est issu l'échantillon de taille n. C'est donc l'intervalle centré sur p dans lequel on s'attend à trouver la fréquence du caractère étudié avec une probabilité d'au moins 1-\alpha. En particulier, pour \alpha = 0{, }05, \left[ p - 1{, }96 \dfrac{\sqrt{p\left(1-p\right)}}{\sqrt{n}}; p + 1{, }96 \dfrac{\sqrt{p\left(1-p\right)}}{\sqrt{n}} \right] est un intervalle de fluctuation au seuil de 95% de la fréquence d'apparition d'un caractère dans un échantillon aléatoire de taille n (à condition d'avoir n \geq 30 \text{, } np \geq 5 \text{, } n\left(1-p\right) \geq 5). Probabilité type bac terminale s – the map. Soit X_n une variable aléatoire suivant une loi binomiale B\left(n;p\right) où p est la proportion inconnue d'apparition d'un caractère, et F_n=\dfrac{X_n}{n} la fréquence associée à X_n. Alors, pour n assez grand, p appartient à l'intervalle \left[F_n-\dfrac{1}{\sqrt{n}};F_n+\dfrac{1}{\sqrt{n}}\right] avec une probabilité supérieure ou égale à 0, 95. Dans la pratique, on utilise les mêmes conditions que pour les intervalles de fluctuation: n\geq 30 n\times F_n\geq 5 n\times \left(1-F_n\right)\geq 5 Avec les notations de la propriété précédente, l'intervalle \left[F_n-\dfrac{1}{\sqrt{n}};F_n+\dfrac{1}{\sqrt{n}}\right] est appelé intervalle de confiance de \dfrac{X_n}{n} au niveau de confiance 0, 95.
  1. Probabilité type bac terminale s maths
  2. Type bac probabilité terminale s

Probabilité Type Bac Terminale S Maths

Exercice 4 (6 points) Commun à tous les candidats Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe. Un salarié malade est absent La première semaine de travail, le salarié n'est pas malade. Si la semaine n n le salarié n'est pas malade, il tombe malade la semaine n + 1 n+1 avec une probabilité égale à 0, 0 4 0, 04. Si la semaine n n le salarié est malade, il reste malade la semaine n + 1 n+1 avec une probabilité égale à 0, 2 4 0, 24. On désigne, pour tout entier naturel n n supérieur ou égal à 1, par E n E_{n} l'évènement "le salarié est absent pour cause de maladie la n n -ième semaine". On note p n p_{n} la probabilité de l'évènement E n E_{n}. Saverdun. Les élèves du lycée professionnel rencontrent les responsables de vingt-trois entreprises - ladepeche.fr. On a ainsi: p 1 = 0 p_{1}=0 et, pour tout entier naturel n n supérieur ou égal à 1: 0 ⩽ p n < 1 0\leqslant p_{n} < 1. Déterminer la valeur de p 3 p_{3} à l'aide d'un arbre de probabilité. Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.

Type Bac Probabilité Terminale S

Probabilités A SAVOIR: le cours sur Sommes de variables aléatoires Exercice 3 Le directeur de l'entreprise Gexploat a classé ses salariés en fonction de leur investissement dans la société. Il a distingué 3 groupes: groupe A formé des 30% des salariés qui s'investissent peu. groupe B formé des 50% des salariés dont l'investissement est acceptable. groupe C formé des 20% des salariés dont l'investissement est important. Le directeur choisit 10 fois de suite un salarié au hasard (les 10 choix sont donc indépendants), et obtient ainsi un échantillon de 10 salariés. Soit X la variable aléatoire donnant le nombre de salariés du groupe A dans l'échantillon. On définit de même Y qui donne le nombre de salariés du groupe B et Z qui donne le nombre de salariés du groupe C. Que dire de X, de Y? Déterminer $p(X=2)$, $p(X≥3)$ (arrondies à 0, 001 près). Déterminer $E(X)$ et $E(Y)$. En déduire la valeur de $E(Z)$. Probabilité type bac terminale s maths. Quelle est la nature de Z? Retrouver alors la valeur de E(Z). Déterminer $V(X)$, $V(Y)$ et $V(Z)$.
Si on tombe sur « pile », on gagne 3 €, si on tombe sur « face », on gagne 4 €. La 2e partie consiste à lancer un dé virtuel à 3 faces. Si on tombe sur « 1 », on gagne 1 €, si on tombe sur le « 2 » on gagne 2€ et si on tombe sur le « 3 », on perd 5 € On considère $X$, $Y$ les variables aléatoires égales au gains algébriques du joueur respectives de la première partie et de la deuxième partie. Probabilités - TS - Fiche bac Mathématiques - Kartable. Par exemple, l'évènement $(X = 3) \cap (Y= −5)$ signifie qu'on a gagné 3 € à la première partie et on a perdu 5 € à la deuxième partie. On considère que les variables aléatoires $X$ et $Y$ sont indépendantes. Établir la loi de probabilité de la variable aléatoire somme $S= X+Y$ donnant le gain total cumulé à la fin des deux parties et calculer sa moyenne.